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Hamilton–Jacobi Treatment of Chiral
Schwinger Model

Dumitru Baleanu1,2 and Yurdahan Güler1,3

We investigate the path integral quantization of the bosonic chiral Schwinger model
using multi-Hamilton–Jacobi procedure. The integrability conditions require the exten-
sion of the initial phase space. The Wess–Zumino term was recovered calculating the
action corresponding to the extended system.

1. INTRODUCTION

The application of Hamilton–Jacobi formalism to field theory started with
Carath́eodory’s pioneering work (Carath´eodory, 1922, 1929). Constrained dy-
namical systems, field theory (Bergmann, 1966; Dominiciet al., 1984; Goldberg
et al., 1991; Kastrup, 1977; Kuchar, 1982), and strings and p-branes (Hosotani and
Nakayama, 1999; Kastrup, 1979; Kastrup and Rinke, 1981; Nambu, 1980, 1981)
were also investigated afterwards.

Recently, singular systems with higher order Lagrangians, systems which
have elements of the Berezin algebra (Pimentelet al., 1996, 1998; Pimentel and
Teixeira, 1998), the quantization of Proca’s model (Baleanu and G¨uler, 2000), the
nonrelativistic particle on a curved space (Baleanu and G¨uler, 2001), as well as
supersymmetric quantum mechanics (Baleanu and G¨uler, in press) in Witten’s ver-
sion (Witten, 1981), were investigated using multi-Hamilton–Jacobi formulation
initiated in Güler (1987a,b, 1989, 1992a,b).

On the other hand in G¨uler (1998) all local classical field theories described
by the LagrangianL(φi ,

∂φi

∂xµ
), i = 1, . . . , n are treated as singular systems with
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constraintsH ′0 = p0− L = 0, H ′µ = pµ + πi
∂φi

∂xµ = 0, wherep0, pµ, andπi are
generalized momenta corresponding toτ , xµ, andφi respectively. The canonical
equations corresponding to above Hamiltonians are integrable if and only if all the
variations ofL are zero.

For a second-class constrained system in Dirac’s classification (Dirac,
1964; Hansonet al., 1976; Henneaux, 1985; Henneaux and Teiteilbom, 1992;
Sahbanov, 2000; Sundermeyer, 1982), like the bosonic chiral Schwinger model,
the corresponding Hamilton–Jacobi equations are not integrable.

To avoid this problem we have two basic possibilities, the first one is to enlarge
the phase space (Batalin and Fradkin, 1986, 1987; Batalinet al., 1989a,b; Batalin
and Tyutin, 1991) and the other one is to keep to the original phase space itself
(Rajaraman and Mitra, 1990a,b; Rabei and G¨uler, 1992).

On the other hand the Hamilton–Jacobi formalism for fields requires a special
attention when all Hamiltonians are densities because the surface terms (Henneaux
et al., 1992) play an important role in the process of quantization.

The theories in which chiral fermions interact with gauge fields possess
anomalies in the fermionic current. This current can be shown to be covariantly
conserved using the equations of motion but quantum effects are expected to de-
stroy this symmetry. It has been proposed by introducing a new dynamical field
contained in the Wess–Zumino action in order to render the theory gauge invariant
(Faddeev and Shatashvili, 1986). On the other hand a proper evaluation of the
bosonic measure in the path integral uncovers the presence of the Wess–Zumino
term. Jackiw and Rajaraman proposed the chiral Schwinger model as an example of
anomalous theory (Girottiet al., 1986; Jackiw and Rajaraman, 1985; Rajaraman,
1985). The model was investigated recently both from Batalin–Fradkin–Tyutin
and gauge unfixing point of view (Vytheeswaran).

For these reasons the path integral quantization of the chiral Schwinger model,
on the extended phase space, using Hamilton–Jacobi formulation, is interesting to
investigate.

The plan of the paper is the following:
In Section 2 the multi-Hamilton–Jacobi formalism is presented. In Section 3

the chiral Schwinger model is analyzed using this formalism. The conclusions are
presented in Section 4.

2. HAMILTON–JACOBI FORMALISM

This section is devoted to the presentation of the multi-Hamilton–Jacobi
formulation (Güler, 1987a,b, 1989, 1992a,b). Instead of usual variational prin-
ciple, a method suggested byCarath́eodoryis followed (Carath´eodory, 1967). If
the rank of the Hessian matrix

∂2L

∂q̇i q̇ j
, i , j = 1, . . . , n (1)
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is m < n,

pa = ∂L

q̇a
, µ = m+ 1, . . . , n, pµ = ∂L

q̇a
, µ = m+ 1, . . . , n, (2)

gives primary constraints

H ′µ = pµ + Hµ(τ, qi , pa) = 0. (3)

If the usual HamiltonianH0 is defined as

H0 = −L + paωa − q̇µHµ (4)

we may solve Eqs. (2) foṙqb asq̇b = ωb(pµ, qi , q̇µ, pa). Hence, the Hamilton–
Jacobi functionS(τ, qi ) should satisfy the following set of partial differential
equations simultaneously for an extremum:

H ′0

(
τ, qi , pa = ∂S

∂qa
, p0 = ∂S

∂τ

)
= 0,

(5)

H ′µ

(
τ, qi , pa = ∂S

∂qa
, p0 = ∂S

∂τ

)
= 0,

where H ′0 = p0+ H0 and H ′µ is given by (3). So, we have multi-Hamiltonian
system to start with. The canonical equations corresponding toH ′0 and H ′µ are
total differential equations intβ are as follows

dqr = ∂H ′α
∂pr

dtα,

dpr = −∂H ′α
∂qr

dtα, r = 0, 1,. . . , n, α = 0, 1,. . . , m, (6)

dz=
(
−Hα + pa

∂H ′α
∂pa

)
dtα, z= S(tα, qa),

wheret0 = τ, tµ = qµ.
Since the canonical equations are total differential equations their integrability

conditions should be considered. In other words Eqs. (6) are integrable if and only
if d H′0 = 0, d H′µ = 0. If these variations are not zero then additional constraints
may arise. Thus, we may have Hamiltonians other than initial ones. The essence
of the formalism is to express all Hamiltonians as

H ′0 = p0+ H0, H ′α = pα + Hα. (7)

On the other hand we know that the integrability conditions are the same
as Dirac’s consistency conditions (Pimentelet al., 1998). Even if we recover the
same results as in Dirac’s formalism we cannot say that we describe the system by
Hamilton–Jacobi formalism. In order to have this interpretation the Hamiltonians
must be in involution and in the form given by (7).
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3. THE CHIRAL SCHWINGER MODEL

The bosonized version has the following Lagrangian density (Girottiet al.,
1986; Jackiw and Rajaraman, 1985; Rajaraman, 1985):

L = −1

4
FµνFµν + 1

2
(∂µφ)2+ e(gµν − εµν) (∂µφ)Aν + 1

2
e2αA2

µ, (8)

wheregµν = diag(1, –1),ε01 = −ε10 = 1, andα is the regularization parameter.
The lagrangian is gauge noninvariant for all values ofα. We consider the case
α > 1.

The canonical Hamiltonian density is

Hc = 1

2
π2

1 +
1

2
π2
φ +

1

2
(∂1φ)2+ e(∂1φ + πφ)A1+ 1

2
e2(α + 1)A2

1

− A0

[
−∂1π1+ 1

2
e2(α − 1)A0+ e(∂1φ + πφ)+ e2A1

]
, (9)

where the momenta conjugate toA1 andφ areπ1 = F01 = ∂0A1− ∂1A0 andπφ =
∂0φ + e(A0− A1). The canonical momentumπ0 corresponding toA0 vanishes,
and thus the Hamiltonian densities are

H ′0 =
∫

(p0+ Hc) dx, (10)

H ′1 =
∫
π0 dx. (11)

Taking the variation of (10) we get

−∂1π1+ e2(α − 1)A0+ e(∂1φ + πφ)+ e2A1 = 0. (12)

Since the variation of (12) is zero then we conclude that we have three Hamiltonians

H ′0 =
∫

(p0+ Hc) dx, H ′1 =
∫
π0 dx,

(13)

H ′2 =
∫

[−∂1π1+ e2(α − 1)A0+ e(∂1φ + πφ)+ e2A1] dx,

which is in agreement with the corresponding Dirac’s analysis. By direct calcula-
tions we can verify that the Hamiltonians given by (13) are not in involution, thus
the corresponding system of total differential equations is not integrable.

Since our aim is to quantize the system presented above using the multi-
Hamilton–Jacobi formalism we must transform it in such a way that the
Hamiltonians (13) are in involution (Carath´eodory, 1967).

For this reason we enlarge the system using Batalin–Fradkin–Tyutin formal-
ism (Batalin and Fradkin, 1986, 1987; Batalinet al., 1989a,b; Batalin and Tyutin,
1991). The essence of this formalism is to enlarge the phase space with some extra
variables such that the modified canonical Hamiltonian and modified second class



P1: FLF

International Journal of Theoretical Physics [ijtp] PP233-343697 September 11, 2001 9:13 Style file version Nov. 19th, 1999

Hamilton–Jacobi Treatment of Chiral Schwinger Model 2021

constraints are in involution (for more details see Batalin and Fradkin, 1986, 1987;
Batalinet al., 1989a,b; Batalin and Tyutin, 1991).

In our case we need only two extra fieldsθ ,πθ . The new Hamiltonian densities
(13) are

H
′′
0 =

∫
dx

[
p0+ −θ (eπ1+ e(α − 1)∂1A1)√

α − 1
+ e2

2(α − 1)
θ2+ 1

2
(∂1θ )2

+ 1

2
π2
θ −

πθ

e
√
α − 1

(−∂1π1+ e2(α − 1)A0+ e(∂1φ + πφ)+ e2A1)

+ πθe
√
α − 1+ Hc

]
, (14)

H
′′
1 =

∫ [
π0+ e

√
α − 1θ

]
dx,

H
′′
2 =

∫ [
πθ + −∂1π1+ e2(α − 1)A0+ e(∂1φ + πφ)+ e2A1

e
√
α − 1

]
dx,

whereHc is the Hamiltonian density given by (9). From (6) and (14) and taking
into account thatd A0 = Ȧ dτ anddθ0 = θ̇ dτ we find

z =
∫

dx dτ

[
π2
φ

2
+ π

2
1

2
− eA1∂1φ − 1

2
e2(α + 1)A2

1

+ A0

(
1

2
e2(α − 1)A0+ e∂1φ + e2A1

)
+ eθ
√
α − 1∂1A1− e2

2(α − 1)
θ2

− 1

2
(∂1θ )2− 1

2
(∂1φ)2+ 1

2
π2
θ +

πθ

e
√
α − 1

(e2(α − 1)A0+ e∂1φ + e2A1)

− eθ
√
α − 1Ȧ0− θ̇

(
e
√
α − 1A0+ ∂1φ√

α − 1
+ eA1√

α − 1

)]
. (15)

Since the surface terms∂1φ and∂1π1 from (14) give no contribution to the
actionz we can change the variableA0 into A′0 as A′0→ A0+ πθ

e
√
α−1
− θ̇

e
√
α−1

.
Then the action given by (15) becomes

z =
∫

dx dτ

[
π2
φ

2
+ π

2
1

2
− eA1∂1φ − 1

2
e2(α + 1)A2

1+
1

2
e2(α + 1)(A′0)2

+ e2A1A′0−
e2

2(α − 1)
θ2+ 1

2
∂µ∂

µθ + e∂1φ(A′0− A1)+ eθ
√
α − 1∂1A1

+ θ̇e
√
α − 1A′0−

1

2
(∂1φ)2

]
. (16)
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Making the transformationπ1 7→ π ′1 = π1− eθ√
(α−1)

, θ 7→ θ
√
α − 1, and

τ 7→ t , the action becomes

z =
∫

dx dτ

[−1

4
FµνFµν + e2α

2
AµAµ + e(gµν − εµν)(∂µφ)Aν + 1

2
(∂µφ)2

+ α − 1

2
(∂µθ )2− eθ ((α − 1)gµν + εµν)(∂µAν)

]
. (17)

The action (17) is the same as obtained by Wess and Zumino (1971).

4. CONCLUDING REMARKS

In this paper we quantized the bosonized version of the chiral Schwinger
model using Hamilton–Jacobi formalism.

We find the same constraints as in Dirac’s formalism and we conclude that
the corresponding system of total differential equations is not integrable since the
Hamiltonian densities are not in involution.

By enlarging the phase space the system of three Hamiltonian densities be-
comes in involution and in the form given by (7).

Surface terms are essential to recover the same result as obtained by adding
the Wess–Zumino terms to the original bosonized action (8).

For a given nonintegrable system from multi-Hamilton–Jacobi point of view
we can associate, depending on the method used for making Hamiltonians in
involution, an integrable system.

Using Batalin–Fradkin–Tyutin formalism for converting the second-class
constraints into first-class constraints it is not the unique procedure to get a valid
multi-Hamilton–Jacobi formulation. In other words we can associate different in-
tegrable multi-Hamilton–Jacobi systems if we use different approaches of abelian-
ization of second-class constraints.

An interesting question is to use the gauge unfixing method (Annishetty
and Vytheeswaran, 1993; Vytheeswaran, 1994) for making the constraints in invo-
lution and then to analyze the characteristics of the corresponding multi-Hamilton–
Jacobi system. This problem is under investigation (Baleanu and G¨uler, manuscript
in preparation).
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